产品经理需要了解的推荐算法

分享人:吴彬

目录

1.普通的产品经理需要了解算法到何种程度

2.热度算法

3.基于内容的推荐算法

4.基于用户的协同推荐

1.普通的产品经理需要了解算法到何种程度

如果产品:数据量足够大,用户、内容互相之间存在足够多的差异性;产品对于内容分发有较高的要求;不需要强调自己的风格或者服务特定目标人群,那是时候接入推荐算法了。普通产品经理需要做的是:提供需求(用户在何时需要何种推荐),协调算法工程师和程序员之间的业务配合。

2.热度算法

基本原理:把热点的内容优先推荐给用户,能覆盖到大部分的内容需求,而且启动成本低。新闻热度分 = 初始热度分 + 用户交互产生的热度分 – 随时间衰减的热度分

初始热度值:按照新闻类别给予新闻不同的初始热度,让用户关注度高的类别获得更高的初始热度分,从而获得更多的曝光。对于重大事件的报道,热词匹配的方式,对大型新闻站点的头条,微博热点,竞品的头条做监控和扒取,并将这批新闻的关键词维护到热词库并保持更新;每条新闻入库的时候,让新闻的关键词去匹配热词库,匹配度越高,就有越高的初始热度分。

用户行为分(D):将用户行为:阅读(C)、收藏(F)、分享(S)、评论(C),根据权重赋予相应的分数,则用户行为分数为:X*阅读+Y*收藏+Z*分享+W*评论。

时间衰减:新闻的强时效性,已经发布的新闻的热度值必须随着时间流逝而衰减,并且趋势应该是衰减越来越快,直至趋近于零热度。要求推荐给用户的新闻必须是24h以内。

3.基于内容的推荐算法

基本原理:对比新闻之间的相似度,如果两个新闻的关键词越类似,那两个新闻是相关内容的可能性更高。

关键词新闻内频率指标(A):将新闻看作是所有关键词的合集,重合多越高,则两新闻相关的可能性越高。

分词:停用没有实际含义的词库,例如:“给”、“是”、“啊”

关键词频率相反指标(B):例如:“郑州摩拜单车数量激增。”、“郑州天气好转,大家可以骑摩拜单车出去溜溜啦。”这两条新闻虽然关键词重叠频率高,但讲述的内容完全不同。一个关键词在某条新闻出现的频率最大,在所有文档中出现的频率越小,该关键词对这条新闻的特征标识作用越大。

内容推荐的实施:例如,用户已经阅读新闻1,对于新闻2的推荐程度,引入内容相似度比对指标C,提取新闻1和新闻2的相同关键词,新闻1:∑C1=A1*B1,新闻2:∑C2=A2*B2,比对∑C1和∑C2,数字越接近,则两新闻相关性越强。此时引入用户阅读新闻1的用户行为分(D),得出基于内容推荐的指标:C*D*N,其中N为内容推荐算法系数。

4.基于用户的协同推荐

基本原理:依据用户A的阅读喜好,为A找到与他兴趣最接近的群体,所谓“人以群分”,然后把这个群体里其他人喜欢的,但是A没有阅读过的内容推荐给A。

用户群体划分:外部数据的借用:借用第三方登陆的用户信息、IP地址、地理位置。 产品内主动询问:产品首次启动的时候,弹框询问用户是男是女,职业等。 对比用户特征:依据热度推荐和内容推荐给出的用户阅读行为和内容相似度,判断用户阅读喜好相似度。

假设用户A在系统归属于群体X,首先,群体X中用户交互过(阅读,评论等)的新闻提取出来;需要剔除掉用户A已经看过的新闻,对余下的新闻进行评分和相似度加权的计算,计算包括两部分,一是用户A与群体每一个用户的相似性,二是每个用户对新闻列表中每条新闻的喜好,这样就能得到每条新闻相对于用户A的最终得分;将新闻列表按照得分高低的顺序推荐给用户。

5.更多讨论

感谢大家观看

BY : 吴彬